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1 Motivation

For the uninformed reader the rather new theory of categories often seems strange. So
one may wonder why such a complicated theory is necessary, what we gain by developing
it further and how we can apply it to mathematical problems. What becomes clear at
first sight is that it is not one of those theories which can be read as an evening read
in bed but rather demands concentration on what is known from older subjects like set
theory, algebra and topology as well as bringing the notions of these to a more abstract
level. The following example should make clear why category theory is a powerful tool.

Consider any two non-empty sets A1 and A2 and their cartesian product A1 × A2

together with projection functions π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2. The
cartesian product has the property that if C is any third set and f1 : C → A1 and
f2 : C → A2 are functions then we can find a unique function f : C → A1 × A2 that
satisfies π1 ◦ f = f1 and π2 ◦ f = f2, i.e. the following diagram commutes.

C

A1 A2

A1 ×A2

f1

f

f2

π1 π2

Now the interesting thing is that if there is a set P together with functions ρ1 : P → A1

and ρ2 : P → A2 having the same property as the cartesian product A1×A2 with π1 and
p2 then there exists a bijection g : P → A1 × A2 such that π1 ◦ g = ρ1 and π2 ◦ g = ρ2,
i.e. the diagram below commutes.

P

A1 A2

A1 ×A2

ρ1

g

ρ2

π1 π2

We can see that P and A1×A2 are identical up to relabeling of elements and so we call
the property satisfied by A1 ×A2 and P universal.

The same can be derived for the direct product of two groups A1 and A2 together
with projection homomorphism π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2 and also
for the topological product A1 × A2 of two topological spaces together with continuous
projection functions π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2. It follows that
if C is any group (topological space, respectively) and f1 : C → A1 and f2 : C →
A2 are homomorphisms (continuous functions) then there is a unique homomorphism
(continuous function) f : C → A1×A2 satisfying π1◦f = f1 and π2◦f = f2. Then again
if P is any group (topological space) with projections ρ1 : P → A1 and ρ2 : P → A2

having the same universal property as the direct product (topological product) then

2



there exists an isomorphism (homeomorphism) g : P → A1 × A2 such that π1 ◦ g = ρ1
and π2 ◦ g = ρ2.
We find that the essence of this is the interchangeability of the following terms

set ←→ group ←→ topological space
function ←→ homomorphism ←→ continuous function
bijection ←→ isomorphism ←→ homeomorphism

cartesian product ←→ direct product ←→ topological product

by just one column that is more general:

object
morphism

isomorphism
product
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2 Categories

2.1 Concrete Categories

We will first give the definition for a concrete category and look at some examples that
make it easy to follow the definition. Later on the term abstract category will be defined.

Definition (Concrete Category). A concrete category is a triple C = (O, U, hom) where

(i) O is a class whose members are called C-objects

(ii) U : O → U is a set-valued function, where for each C-object A, U(A) is called the
underlying set of A.

(iii) hom : O×O → U is a set-valued function, where for each pair (A,B) of C-objects,
hom(A,B) is called the set of all C-morphism with domain A and codomain B.

such that the following conditions are satisfied:

(1) For each pair (A,B) of C-objects, hom(A,B) is a subset of the set U(B)U(A) of all
functions from U(A) to U(B).

(2) For each C-object A, the identity function 1U(A) on the set U(A) is a member of
hom(A,A).

(3) For each triple (A,B,C) of C-objects, f ∈ hom(A,B) and g ∈ hom(B,C) implies
that g ◦ f ∈ hom(A,C) (where ’◦’ denotes the composition of functions).

To get a more accurate impression of what a concrete category is, we list some impor-
tant examples:

Examples. 1. Set: The class of objects is the class U (universe) of all sets with
U : U → U , U(A) = A for all A ∈ U , i.e. U is the identity function and for all
A,B ∈ U , hom(A,B) is the set of all functions from A to B.

2. Grp: The class of objects is the class of all groups with U(A) as the underlying
set of any group A. All group homomorphism from a group A to a group B form
the set hom(A,B).

3. Top: The class of objects is the class of all topological spaces with U(A) as the un-
derlying set of any topological space A. All continuous functions from a topological
space A to a topological space B form the set hom(A,B).

4. POS: The category POS has all partially ordered sets as objects together with
monotone functions as members of hom(A,B) for any two partially ordered sets
A and B. For any A ∈ POS, U(A) is the underlying set.

5. Ab: The category Ab has all abelian groups as objects together with group ho-
momorpisms as members of hom(A,B) for any two abelian groups A and B. For
any A ∈ Ab, U(A) is the underlying set.
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6. SGrp: This category is built up of all semigroups as the class of objects and
has U(A) as the underlying set for any normed semigroup A. The morphisms in
hom(A,B) between two semigroups A and B are semigroup homomorphism.

7. NLinSpace: This category is built up of all normed spaces as the class of ob-
jects and has U(A) as the underlying set for any normed linear space A. The
morphisms in hom(A,B) between two normed linear spaces are bounded linear
transformations.

2.2 Abstract Categories

Now we come to the notion of abstract categories where we analyze more general struc-
tures as for example we neither require morphisms to be functions nor the composition
law to be the composition of functions.

Definition (Abstract Category). A category is a quintuple C = (O,M, dom, cod, ◦)
where

(i) O is a class whose members are called C-objects

(ii) M is a class whose members are called C-morphisms

(iii) dom and cod are functions from M to O (dom(f) is called the domain of f and
cod(f) is called the codomain of f).

(iv) ◦ is a funcion from

D = {(f, g)|f, g ∈M and dom(f) = cod(g)}

into M, called the composition law of C (we say that f ◦ g is defined if and only if
(f, g) ∈ D).

such that the following conditions are satisfied:

(1) Matching Condition: If f ◦g is defined, then dom(f ◦g) = dom(g) and cod(f ◦g) =
cod(f);

(2) Associativity Condition: If f ◦g and h◦f are defined, then h◦ (f ◦g) = (h◦f)◦g

(3) Identity Existence Condition: For each C-object A there exists a C-morphism e
such that dom(e) = cod(e) and

(a) f ◦ e = f whenever f ◦ e is defined

(b) e ◦ g = g whenever e ◦ g is defined

(4) Smallness of Morphism Class Condition: For any pair (A,B) of C-objects, the
class

homC(A,B) = {f |f ∈M, dom(f) = A and cod(f) = B}

is a set.
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Remark. The identity e is not only existent but also unique.

Before giving any examples of abstract categories we will establish three more terms:

Definition. A category C is said to be:

(1) small provided that C is a set.

(2) discrete provided that all of its morphisms are identities.

(3) connected provided that for each pair (A,B) of C-objects, homC(A,B) 6= ∅.

Examples. 1. Given a concrete category C = (O,U , hom) there exists a category
naturally associated with it, i.e. the class of objects is O, the morphism sets are
hom(A,B) and the composition law is the usual composition of functions. It is
small/discrete/connected if the concrete category is small/discrete/connected.

2. The category of sets and relations with all sets as objects, all relations from one set
A to another set B as members of hom(A,B) and composition law for relations.
This category is connected.

3. Given a quasi-ordered class (C,≤) (C is a class with reflexive, transitive relation
≤ on C) we gain a category C̃ by making the objects of C the objects of C̃. For
the morphisms in C̃ we demand that hom(A,B)C̃ contains exactly one element if
A ≤ B and is empty otherwise. (The same can be done for partially-ordered and
totally-ordered classes.) The properties small/discrete/connected depend on the
chosen class with its own ordering.

4. Consider the set {0, 1, 2..., n−1} for any n ∈ N with the usual order of the natural
numbers. According to 3. this can be considered a small category and can be
visualized for different n as follows:

0 = The empty set

1 = •

2 = 0• •1

3 =

0• •1

2•

4 =

0• •1

2•

3•
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These examples give rise to the so called concretizable categories. Each of the four
examples is such a concretizable category, namely for each of them there is a concrete
category C̃ such that the category naturally associated with C̃ is ’isomorphic’ with C.
Most categories are concretizable, however, we will give an example of a not concretizable
category later on when we come to quotient categories.

3 Forming new categories from old ones

We will start this section with a very familiar and intuitive notion. The notion of (full)
subcategories.

Definition (subcategory). A category B is said to be a subcategory of the category C
provided that the following conditions are satisfied:

(1) O(B) ⊆ O(C)

(2) M(B) ⊆MC)

(3) The domain, codomain and composition functions of B are restrictions of the corre-
sponding functions of C.

(4) Every B-identity is a C-identity.

A subcategory B of C is said to be a full subcategory provided that for all A,B ∈
O(B), homB(A,B) = homC(A,B).

Examples. (1) Each category is a full subcategory of itself.

(2) The category of finite sets is a full subcategory of Set.

(3) The category of sets and injective functions is a subcategory of Set but not a full
one as surjective and bijective functions are missing (For the category of sets and
surjective functions (bijective functions, respectively) the same statement is true).

(4) The category of sets and relations is not a subcategory of Set as point (2) of the
definition is not satisfied.

3.1 Quotient Categories

Quotient categories are an approach, yet not obvious way, to form new categories from
old ones. But in order to give an impression of what a quotient category is it is necessary
to know what a congruence on the class of morphisms of a category is.

Definition (congruence). An equivalence relation ∼ on the class of morphisms of a
category C is called a congruence on C provided that:

1. every equivalence class under ∼ is contained in hom(A,B) for some A,B ∈ O(C),
and
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2. whenever f ∼ f ′ and g ∼ g′ it follows that g◦f ∼ g′◦f ′ whenever the compositions
are meaningful.

Proposition. If ∼ is a congruence on a category C, then the class D of equivalence

classes of morphisms together with the composition law ◦̃ defined by: g̃◦̃f̃ = g̃ ◦ f is a
category and we call it the quotient category of C with respect to ∼.

Remark. In fact a quotient category has essentially the same objects as the category it
resulted from.

As mentioned before quotient categories are not always concretizable. This is also
true for the next example.

Examples. The category hTop is the category Top together with an equivalence rela-
tion ∼ that is defined as follows: For all A,B ∈ O(Top) and all f, g ∈ homTop(A,B),
f ∼ g if and only if f and g are homotopic. Freyd has shown that although Top is
concretizable hTop is not.

3.2 Products and sums of categories

Products as well as sums of categories are more palpable than quotient categories and
can be easily formed from other categories.

Definition (product category). If C1, C2, . . . , Cn are categories, then the product of the
morphism classes

M1 ×M2 × · · · ×Mn

together with the composition operation

(f1, f2, . . . , fn) ◦ (g1, g2, . . . , gn) = (f1 ◦ g1, f2 ◦ g2, . . . , fn ◦ gn)

is called the product category of C1, C2, . . . , Cn.

Definition (sum category). If C1, C2, . . . , Cn are categories, then the disjoint union of
the morphism classes

M1 qM2 q · · · qMn

together with the composition operation

(f, i) ◦ (g, j) = (f ◦ g, i) if and only if i=j

is called the sum category of C1, C2, . . . , Cn.
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3.3 Dual Categories

Another very important way of gaining new categories are dual categories. It is not
only the fact that each category has a dual category but it also establishes an important
principle: the duality principle.

Definition (dual category). For any category C = (O,M, dom, cod, ◦), the opposite (or
dual) category of C is the category Cop = (O,M, cod, dom, ?), where ? is defined by
f ? g = g ◦ f .

Remark. Basically just the domain, codomain functions and composition laws are switched.
Also (Cop)op = C.

Dual categories make it possible to define a dual concept for every categorical con-
cept, i.e. if P is a property concerning morphisms and objects of a category C, then
there is the same property for the opposite category Cop, which can be (if it is true for
Cop) translated into a property P op for the category C; in fact this can be derived for
categorical statements:
If S is a categorical statement which holds for all categories, then Sop also holds for all
categories.

3.4 Comma Categories

At last we obtain new categories by choosing an object of C and forming the comma
category of A over C (of C over A, respectively).

Definition (comma category over C). If C is any category and A ∈ O(C), then the
comma category of A over C is the category (A, C) whose objects are those C-morphisms

that have domain A and whose morphisms from A B
f

to A B′f ′
are those

C-morphisms g : B → B′ for which the following triangle commutes

A

B B′

f f ′

g

Composition in (A, C) is defined according to the composition in C.

Definition (comma category over A). If C is any category and A ∈ O(C), then the
comma category of C over A is the category (C, A) whose objects are those C-morphisms

that have codomain A and whose morphisms from B A
f

to B′ A
f ′

are
those C-morphisms g : B → B′ for which the following triangle commutes

B B′

A

g

f f ′
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Composition in (C, A) is defined according to the composition in C.

To gain some deeper insight into the theory of categories it is necessary to study
special morphisms and objects which will be the content of another presentation.
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