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1 Introduction

This write-up will deal with functors into the category Set of all sets, as they have some
special properties. They are useful since we can extract knowledge about the structure
of Set and apply it to many other categories by usage of e.g. preservance of limits, as
discussed later. This becomes of special importance for non-concretisable categories.

2 Hom Functors

The so-called hom-functors provide essential functors for any category A into Set by
mapping objects of the category to sets of morphisms. In this write-up we will only deal
with covariant hom-functors. A construction of contravariant hom-functors can be done
as well, c.f. [1]. Formally, covariant hom-functors are defined as following:

Definition 1. Let A be a category and A be an A-object. The (covariant) hom-
functor hom(A,−) : A→ Set is defined by

hom(A,−)(C
f−→ B) := hom(A,C)

hom(A,f)−−−−−−→ hom(A,B)

where hom(A, f)(g) := f ◦ g for A
g−→ C.

Examples

• Consider the category Mat with objects all natural numbers and morphisms
hom(m,n) := Rn×m all real-valued matrices with the proper dimensions between
them and the identities idn := En, where En is the n × n unit matrix. Then the
hom-functor hom(a,−) for any given number a ∈ N maps each natural number n
to the set hom(a, n) = Rn×a of all real-valued n × a matrices. For any morphism
f : m → n, i.e. a matrix f ∈ Rn×m the image hom(a, f) is the linear map from
hom(a,m) = Rm×a to hom(a, n) = Rn×a given by (hom(a, f))(A) = f · A for
A ∈ Rm×a.
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• Consider the following small category C, whose universe consists of the two sets
A := {0} and B := {0, 1}. It has (taking away the identity functions) three mor-
phisms f, g, h, which are all constant zero functions.
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Figure 1: the category C

We obtain the following image under application of F := hom(A,−) or G :=
hom(B−), respectively.

idA f

FA FB

idFA

Ff

idFB

Fh

Fg

Figure 2: the image F (C)
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Figure 3: the image G(C)

2



Theorem 1. Let F : A → B be a diagram, L ∈ Obj(B) and (lA : L→ F (A))A∈Obj(A)

be a family of B-morphisms. Then the following are equivalent:

(1) (L, (lA)A∈Obj(A)) is a limit of F,

(2) For each X ∈ Obj(B) the pair (hom(X,−)(L), (hom(X,−)(lA))) is limit of hom(X,−)◦
F .

For a proof, see [1]. This immediately establishes the following

Corollary 2. The covariant hom-functors hom(X,−) preserve limits.

Preservance of limits proves to be useful in cases where we know limits of the domain
of a functor as we can then construct limits of the codomain as well.

3 Representable Functors

Since hom-functors are the most natural functors into Set, we will now investigate func-
tors which are naturally isomorphic to one of them. We call those functors representable.

Definition 2. A functor F : B→ Set is called representable given that it is naturally
isomorphic to a covariant hom-functor hom(X,−) for a suitable X ∈ Obj(B). A repre-
sentation of F is a pair (X, τ), where X is a B-object and τ = (τB) : hom(X,−)→ F
is a natural isomorphism.

Examples

• The forgetful functor of the category Vec of real vector spaces is represented by
any one dimensional vector space, e.g. R itself.

• Similarly, the functor F : Mat→ Set, mapping n to Rn is represented by 1.

• The identity functor of the category with objects {0}, {0, 1} and

– morphisms all constant-zero-mappings[1] between them is represented by {0, 1}.
– morphisms all constant-one-mappings[1] is not representable.

– morphisms all constant mappings[1] is represented by {0}.

• More generally, the identity functor of any category C with objects any class
of non-empty sets and functions all constant mappings[1], is represented by any
singleton[2].

• The power set functor is not representable.

[1]And the identities.
[2]A set with one element
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Proof. Let P : Set → Set be the power set functor. Assume P is representable
by some pair (A, τ). Let S be an arbitrary fixed singleton set with S 6= A. Then
τS : hom(A,S) → P(S) is a bijective map, since τ is a natural isomorphism. But
|hom(A,S)| = 1 and |P(S)| = 2 since S is a singleton. Hence by cardinality τS
cannot be bijective which is P is not representable.

One can prove that for two naturally isomorphic functors F,G : A → B the first
functor F preserves limits if, and only if, the functor G does so (c.f. [1], p.225). With
this knowledge we immediately obtain the following

Corollary 3. Representable functors preserve limits.

4 Yoneda Lemma

The Yoneda lemma is useful when dealing with representable functors. First we will
present this theorem in a slightly different manner.

Theorem 4. For any functor F : A→ Set, any A-object A and any element a ∈ F (A),
there exists a unique natural transformation τ : hom(A,−)→ F with τA(idA) = a.

Proof. To show existence, we define τ by τC : f 7→ (Ff)(a) for f ∈ hom(A,C). It is easy
to see that then τA(idA) = (F (idA))(a) = idF (A)(a) = a. For naturality, we want the
diagram

hom(A,B) F (B)

hom(A,C) F (C)

τB

hom(A,f) F (f)

τC

to commute for all B,C ∈ Obj(A) and all f : B → C. This is the case since

(Ff ◦ τB)(g) = Ff(τB(g)) = Ff(Fg(a)) = (Ff ◦ Fg)(a)

= (F (f ◦ g))(a) = τC(f ◦ g) = τC(hom(A, f)(g))

= (τC ◦ (hom(A,−)f))(g)

holds for all g : A→ B.
For uniqueness, consider any natural transformation δ : hom(A,−)→ F with δA(idA) =

a. For any C ∈ Obj(A) and f : A→ C naturality of δ implies

δC(f) = δC(f ◦ idA) = (δC ◦ hom(A, f))(idA) = (Ff ◦ δA)(idA)

= Ff(a) = τC(f).

Thus τ = δ.

Remembering [A,B] is the functor quasi-category allows us to rephrase the above
theorem to:
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Corollary 5 (Yoneda Lemma). Let F : A → Set be a functor, B ∈ Obj(A) and
Q = [A,Set]. Then the Yoneda mapping

Y : homQ(homA(B,−), F )→ F (B)

defined by Y (η) := ηB(idB) for all η = (ηA)A∈A ∈ homQ(homA(B,−), F ) is a bijection.

This lemma has its uses, among many, in showing that we have an embedding of any
A into [Aop,Set].

5 Universal Points

Definition 3. Let F : A→ Set be a functor. A pair (U, u) consisting of an A-object U
and a point u ∈ F (A) is called universal point if for each pair (A, a) with A ∈ Ob(A)
and a ∈ F (A) there exists exactly one f : U → A with (Ff)(u) = a.

Examples

• The pair (R, 1) is a universal point of the forgetful functor of Vec.

• The identity functor on P withObj(P) = {{0}, {0, 1}} and morphisms all constant-
zero-maps has the universal point ({0, 1}, 1).

• For the identity functor of K as in the next theorem, ({s}, s) is a universal point,
if {s} ∈ Obj(K).

Proposition 6. Let K be a category with objects a class of non-empty sets, morphisms
all constant functions between them and the identities on each set. Then for any S :=
{s} ∈ Obj(K) the pair (S, s) is an universal point of the identity functor F .

Proof. For any A ∈ Obj(K) and a ∈ FA there are two possibilities:

• If A = S, we have a = s and there is indeed exactly one morphism fulfilling
a = f(s) = Ff(s), namely idA = idS , which is the only constant function from S
into itself, thus satisfying the requirement.

• If A 6= S, there is by definition of K the constant-a-morphism f : S → A, fulfilling
a = f(s) = Ff(s). Any other morphism f 6= g : S → A would need to differ on the
only element in the domain[3], thus yielding a 6= g(s) = Fg(s), hence f is unique.

Thus such a unique morphism exists for all (A, a) and (S, s) is a universal point.

Theorem 7. Let F : B → Set be a functor, U ∈ Obj(B) and η : hom(U,−) → F be a
natural transformation. Then the following are equivalent:

• (U, η) is a representation of F ,

[3]Due to the constantness, this holds for non-singleton S as well. For non singleton sets, this proof would
only fail in the first case.
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• (U, Y (η)) is a universal point of F .

Proof. We first establish for A ∈ Obj(B) and f : U → A, that the diagram

hom(U,U) F (U)

hom(U,A) F (A)

ηU

hom(U,f) Ff

ηA

commutes by naturality of η and thus

ηA(f) = ηA(f ◦ idU ) = ηA(hom(U, f)(idU )) = Ff(ηU (idU ))

= Ff(Y (η))

holds. Now, that (U, η) is a representation of F is equivalent to the claim that for all
A ∈ Obj(B) the mapping ηA : hom(U,A) → FA is a bijection, i.e. for all such A and
all a ∈ FA there is exactly one f : U → A such that a = ηA(f) = Ff(Y (η)). The
last statement however is by definition equivalent to the statement that (U, Y (η)) is a
universal point of F .

This theorem establishes the following useful corrollary:

Corollary 8. For each functor F : B→ Set the following are equivalent:

• The functor F is representable,

• There are universal points of F .

This corollary is useful when proving (un-)representability of functors.

Corollary 9. The identity functor of K as in proposition 6 is representable.
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