Representable Functors

Florian Simon Ebert and Peter Anton Fürstenau

February 19, 2015

1 Introduction

This write-up will deal with functors into the category **Set** of all sets, as they have some special properties. They are useful since we can extract knowledge about the structure of **Set** and apply it to many other categories by usage of e.g. preservance of limits, as discussed later. This becomes of special importance for non-concretisable categories.

2 Hom Functors

The so-called hom-functors provide essential functors for any category \mathbf{A} into **Set** by mapping objects of the category to sets of morphisms. In this write-up we will only deal with covariant hom-functors. A construction of contravariant hom-functors can be done as well, c.f. [1]. Formally, covariant hom-functors are defined as following:

Definition 1. Let A be a category and A be an A-object. The (covariant) homfunctor hom $(A, -) : A \to Set$ is defined by

 $\hom(A, -)(C \xrightarrow{f} B) := \hom(A, C) \xrightarrow{\hom(A, f)} \hom(A, B)$

where $hom(A, f)(g) := f \circ g$ for $A \xrightarrow{g} C$.

Examples

• Consider the category **Mat** with objects all natural numbers and morphisms $\operatorname{hom}(m,n) := \mathbb{R}^{n \times m}$ all real-valued matrices with the proper dimensions between them and the identities $id_n := E_n$, where E_n is the $n \times n$ unit matrix. Then the hom-functor $\operatorname{hom}(a, -)$ for any given number $a \in \mathbb{N}$ maps each natural number n to the set $\operatorname{hom}(a, n) = \mathbb{R}^{n \times a}$ of all real-valued $n \times a$ matrices. For any morphism $f : m \to n$, i.e. a matrix $f \in \mathbb{R}^{n \times m}$ the image $\operatorname{hom}(a, f)$ is the linear map from $\operatorname{hom}(a, m) = \mathbb{R}^{m \times a}$ to $\operatorname{hom}(a, n) = \mathbb{R}^{n \times a}$ given by $(\operatorname{hom}(a, f))(A) = f \cdot A$ for $A \in \mathbb{R}^{m \times a}$.

• Consider the following small category \mathbf{C} , whose universe consists of the two sets $A := \{0\}$ and $B := \{0, 1\}$. It has (taking away the identity functions) three morphisms f, g, h, which are all constant zero functions.

Figure 1: the category \mathbf{C}

We obtain the following image under application of F := hom(A, -) or G := hom(B-), respectively.

Figure 2: the image $F(\mathbf{C})$

Figure 3: the image $G(\mathbf{C})$

Theorem 1. Let $F : \mathbf{A} \to \mathbf{B}$ be a diagram, $L \in Obj(\mathbf{B})$ and $(l_A : L \to F(A))_{A \in Obj(\mathbf{A})}$ be a family of **B**-morphisms. Then the following are equivalent:

- (1) $(L, (l_A)_{A \in Obj(\mathbf{A})})$ is a limit of F,
- (2) For each $X \in Obj(\mathbf{B})$ the pair $(\hom(X, -)(L), (\hom(X, -)(l_A)))$ is limit of $\hom(X, -) \circ F$.

For a proof, see [1]. This immediately establishes the following

Corollary 2. The covariant hom-functors hom(X, -) preserve limits.

Preservance of limits proves to be useful in cases where we know limits of the domain of a functor as we can then construct limits of the codomain as well.

3 Representable Functors

Since hom-functors are the most natural functors into **Set**, we will now investigate functors which are naturally isomorphic to one of them. We call those functors representable.

Definition 2. A functor $F : \mathbf{B} \to \mathbf{Set}$ is called **representable** given that it is naturally isomorphic to a covariant hom-functor $\operatorname{hom}(X, -)$ for a suitable $X \in Obj(\mathbf{B})$. A **representation** of F is a pair (X, τ) , where X is a \mathbf{B} -object and $\tau = (\tau_B) : \operatorname{hom}(X, -) \to F$ is a natural isomorphism.

Examples

- The forgetful functor of the category **Vec** of real vector spaces is represented by any one dimensional vector space, e.g. \mathbb{R} itself.
- Similarly, the functor $F : \mathbf{Mat} \to \mathbf{Set}$, mapping n to \mathbb{R}^n is represented by 1.
- The identity functor of the category with objects $\{0\}, \{0, 1\}$ and
 - morphisms all constant-zero-mappings^[1] between them is represented by $\{0, 1\}$.
 - morphisms all constant-one-mappings^[1] is not representable.
 - morphisms all constant mappings^[1] is represented by $\{0\}$.
- More generally, the identity functor of any category **C** with objects any class of non-empty sets and functions all constant mappings^[1], is represented by any singleton^[2].
- The power set functor is not representable.

^[1]And the identities.

^[2]A set with one element

Proof. Let $\mathcal{P} : \mathbf{Set} \to \mathbf{Set}$ be the power set functor. Assume \mathcal{P} is representable by some pair (A, τ) . Let S be an arbitrary fixed singleton set with $S \neq A$. Then $\tau_S : \hom(A, S) \to \mathcal{P}(S)$ is a bijective map, since τ is a natural isomorphism. But $|\hom(A, S)| = 1$ and $|\mathcal{P}(S)| = 2$ since S is a singleton. Hence by cardinality τ_S cannot be bijective which is \mathcal{P} is not representable.

One can prove that for two naturally isomorphic functors $F, G : \mathbf{A} \to \mathbf{B}$ the first functor F preserves limits if, and only if, the functor G does so (c.f. [1], p.225). With this knowledge we immediately obtain the following

Corollary 3. Representable functors preserve limits.

4 Yoneda Lemma

The Yoneda lemma is useful when dealing with representable functors. First we will present this theorem in a slightly different manner.

Theorem 4. For any functor $F : \mathbf{A} \to \mathbf{Set}$, any \mathbf{A} -object A and any element $a \in F(A)$, there exists a unique natural transformation $\tau : \operatorname{hom}(A, -) \to F$ with $\tau_A(id_A) = a$.

Proof. To show existence, we define τ by $\tau_C : f \mapsto (Ff)(a)$ for $f \in \text{hom}(A, C)$. It is easy to see that then $\tau_A(id_A) = (F(id_A))(a) = id_{F(A)}(a) = a$. For naturality, we want the diagram

$$\begin{array}{c} \hom(A,B) \xrightarrow{\tau_B} F(B) \\ & \downarrow^{\hom(A,f)} \qquad \downarrow^{F(f)} \\ \hom(A,C) \xrightarrow{\tau_C} F(C) \end{array}$$

to commute for all $B, C \in Obj(\mathbf{A})$ and all $f : B \to C$. This is the case since

$$(Ff \circ \tau_B)(g) = Ff(\tau_B(g)) = Ff(Fg(a)) = (Ff \circ Fg)(a)$$
$$= (F(f \circ g))(a) = \tau_C(f \circ g) = \tau_C(\hom(A, f)(g))$$
$$= (\tau_C \circ (\hom(A, -)f))(g)$$

holds for all $g: A \to B$.

For uniqueness, consider any natural transformation δ : hom $(A, -) \to F$ with $\delta_A(id_A) = a$. For any $C \in Obj(\mathbf{A})$ and $f: A \to C$ naturality of δ implies

$$\delta_C(f) = \delta_C(f \circ id_A) = (\delta_C \circ \hom(A, f))(id_A) = (Ff \circ \delta_A)(id_A)$$

= $Ff(a) = \tau_C(f).$

Thus $\tau = \delta$.

Remembering $[\mathbf{A}, \mathbf{B}]$ is the functor quasi-category allows us to rephrase the above theorem to:

Corollary 5 (Yoneda Lemma). Let $F : \mathbf{A} \to \mathbf{Set}$ be a functor, $B \in Obj(\mathbf{A})$ and $\mathbf{Q} = [\mathbf{A}, \mathbf{Set}]$. Then the Yoneda mapping

 $Y : \hom_{\mathbf{Q}}(\hom_{\mathbf{A}}(B, -), F) \to F(B)$

defined by $Y(\eta) := \eta_B(id_B)$ for all $\eta = (\eta_A)_{A \in \mathbf{A}} \in \hom_{\mathbf{Q}}(\hom_{\mathbf{A}}(B, -), F)$ is a bijection.

This lemma has its uses, among many, in showing that we have an embedding of any \mathbf{A} into $[\mathbf{A}^{\text{op}}, \mathbf{Set}]$.

5 Universal Points

Definition 3. Let $F : \mathbf{A} \to \mathbf{Set}$ be a functor. A pair (U, u) consisting of an \mathbf{A} -object Uand a point $u \in F(A)$ is called **universal point** if for each pair (A, a) with $A \in Ob(\mathbf{A})$ and $a \in F(A)$ there exists exactly one $f : U \to A$ with (Ff)(u) = a.

Examples

- The pair $(\mathbb{R}, 1)$ is a universal point of the forgetful functor of **Vec**.
- The identity functor on **P** with $Obj(\mathbf{P}) = \{\{0\}, \{0, 1\}\}$ and morphisms all constantzero-maps has the universal point $(\{0, 1\}, 1)$.
- For the identity functor of **K** as in the next theorem, $(\{s\}, s)$ is a universal point, if $\{s\} \in Obj(\mathbf{K})$.

Proposition 6. Let \mathbf{K} be a category with objects a class of non-empty sets, morphisms all constant functions between them and the identities on each set. Then for any $S := \{s\} \in Obj(\mathbf{K})$ the pair (S, s) is an universal point of the identity functor F.

Proof. For any $A \in Obj(\mathbf{K})$ and $a \in FA$ there are two possibilities:

- If A = S, we have a = s and there is indeed exactly one morphism fulfilling a = f(s) = Ff(s), namely $id_A = id_S$, which is the only constant function from S into itself, thus satisfying the requirement.
- If $A \neq S$, there is by definition of **K** the constant-*a*-morphism $f: S \to A$, fulfilling a = f(s) = Ff(s). Any other morphism $f \neq g: S \to A$ would need to differ on the only element in the domain^[3], thus yielding $a \neq g(s) = Fg(s)$, hence f is unique.

Thus such a unique morphism exists for all (A, a) and (S, s) is a universal point. \Box

Theorem 7. Let $F : \mathbf{B} \to \mathbf{Set}$ be a functor, $U \in Obj(\mathbf{B})$ and $\eta : \hom(U, -) \to F$ be a natural transformation. Then the following are equivalent:

• (U,η) is a representation of F,

^[3] Due to the constantness, this holds for non-singleton S as well. For non singleton sets, this proof would only fail in the first case.

• $(U, Y(\eta))$ is a universal point of F.

Proof. We first establish for $A \in Obj(\mathbf{B})$ and $f: U \to A$, that the diagram

$$\begin{array}{ccc} \hom(U,U) & \xrightarrow{\eta_U} & F(U) \\ & & & \downarrow^{\hom(U,f)} & & \downarrow^{Ff} \\ \hom(U,A) & \xrightarrow{\eta_A} & F(A) \end{array}$$

commutes by naturality of η and thus

$$\eta_A(f) = \eta_A(f \circ id_U) = \eta_A(\hom(U, f)(id_U)) = Ff(\eta_U(id_U))$$
$$= Ff(Y(\eta))$$

holds. Now, that (U, η) is a representation of F is equivalent to the claim that for all $A \in Obj(\mathbf{B})$ the mapping $\eta_A : \hom(U, A) \to FA$ is a bijection, i.e. for all such A and all $a \in FA$ there is exactly one $f : U \to A$ such that $a = \eta_A(f) = Ff(Y(\eta))$. The last statement however is by definition equivalent to the statement that $(U, Y(\eta))$ is a universal point of F.

This theorem establishes the following useful corrollary:

Corollary 8. For each functor $F : \mathbf{B} \to \mathbf{Set}$ the following are equivalent:

- The functor F is representable,
- There are universal points of F.

This corollary is useful when proving (un-)representability of functors.

Corollary 9. The identity functor of \mathbf{K} as in proposition 6 is representable.

References

- Jiří Adámek, Horst Herrlich, and George E. Strecker. Abstracts and concrete categories : the joy of cats. Pure and applied mathematics. Wiley, New York [u.a.], 1990.
- [2] Gerhard Preuß. Grundbegriffe der Kategorientheorie, volume 739 of B.I-Hochschultaschenbücher. Bibliogr. Inst., Mannheim [u.a.], 1975.